Exercise Set 5

Exercise 5.1. Let \mathcal{F} be a laminar family of odd-cardinality subsets of $\{1, \ldots, n\}$. Show that $|\mathcal{F}| \leq \lfloor \frac{3}{2}n - \frac{1}{2} \rfloor$, and demonstrate that this is best-possible, i.e. for every *n* there exists a family for which the bound is tight.

(5 points)

Exercise 5.2. Let $k \in \mathbb{N}$, $k \geq 1$, and suppose G is a k-regular and (k-1)edge-connected graph with an even number of vertices, and with edge weights $c: E(G) \to \mathbb{R}$. Show that there is a perfect matching M in G with $c(M) \leq \frac{1}{k} \cdot c(E(G))$.

(5 points)

Exercise 5.3. Consider the SHORTEST EVEN/ODD PATH PROBLEM: Given a graph G with weights $c : E(G) \to \mathbb{R}_{\geq 0}$ and $s, t \in V(G)$, find an *s*-*t*-path P of even/odd length in G that minimizes $\sum_{e \in E(P)} c(e)$ among all *s*-*t*-paths of even/odd length in G. Show that both the even and the odd version can be linearly reduced to the MINIMUM WEIGHT PERFECT MATCHING PROBLEM.

(5 points)

Deadline: November 12th, before the lecture. The websites for lecture and exercises can be found at:

http://www.or.uni-bonn.de/lectures/ws24/co_exercises_ws.html

In case of any questions feel free to contact me at mkaul@uni-bonn.de.