Exercise Set 4

Exercise 4.1. Let G be an undirected graph with edge weights $c: E(G) \to \mathbb{R}$, and let M be a matching such that $c(N) \leq c(M)$ for all matchings N in G with $|M| - 1 \leq |N| \leq |M| + 1$. Prove that M is a maximum weight matching in G. (4 points)

Exercise 4.2. Consider the MINIMUM COST EDGE COVER PROBLEM: Given a graph G with weights $c : E(G) \to \mathbb{R}_{\geq 0}$, find an edge cover $F \subseteq E(G)$ that minimizes $\sum_{e \in F} c(e)$. Show that the MINIMUM COST EDGE COVER PROBLEM can be linearly reduced to the MINIMUM WEIGHT PERFECT MATCHING PROBLEM. (4 points)

Exercise 4.3. Let G be an undirected graph and $c_1, c_2: E(G) \to \mathbb{R}$ be two weight functions. Let \mathcal{M} be the set of all matchings that have maximum weight with respect to c_1 . How can we find, in polynomial time, a matching $M \in \mathcal{M}$ such that $c_2(M)$ is maximum among all matchings in \mathcal{M} ? Can you devise a strongly polynomial algorithm? (For this, in particular, the algorithm should work for arbitrary real numbers, assuming that we can perform addition, subtraction and comparison.)

Note: You can use the fact that there exists a strongly polynomial algorithm for the MAXIMUM WEIGHT MATCHING PROBLEM.

(4 points)

Exercise 4.4. Let G = (V, E) be an undirected graph and Q its fractional perfect matching polytope, which is defined by

$$Q = \{ x \in \mathbb{R}^E : x_e \ge 0 \ (e \in E), \sum_{e \in \delta(v)} x_e = 1 \ (v \in V) \}.$$

Prove that a vector $x \in Q$ is an extreme point of Q if and only if there exist vertex disjoint odd circuits C_1, \ldots, C_k and a perfect matching M in $G - (V(C_1) \cup \ldots \cup V(C_k))$ such that

$$x_e = \begin{cases} \frac{1}{2} & \text{if } e \in E(C_1) \cup \ldots \cup E(C_k), \\ 1 & \text{if } e \in M, \\ 0 & \text{otherwise.} \end{cases}$$

(4 points)

Deadline: November 5^{th} , before the lecture. The websites for lecture and exercises can be found at:

http://www.or.uni-bonn.de/lectures/ws24/co_exercises_ws.html

In case of any questions feel free to contact me at mkaul@uni-bonn.de.