Diese Vorlesung eignet sich für das (3. oder) 5. Semester im Rahmen des Bachelorstudiengangs Mathematik und ist eine Wahlpflichtvorlesung im Bereich C (Diskrete Mathematik). Ferner kann die Vorlesung im Rahmen des Bachelorstudiengangs Informatik besucht werden. Außerdem kann die Vorlesung für das Modul Foundations in Discrete Mathematics (F4C1) verwendet werden. Nähere Informationen können hier gefunden werden.
Zeit und Ort: Di, Do 12-14, Gerhard-Konow-Hörsaal, Forschungsinstitut für Diskrete Mathematik, Lennéstr. 2
Übungen: Zweistündig, nach Vereinbarung
Prüfung: Es wird zu dieser Vorlesung mündliche Prüfungen geben.
Ziele: Verständnis der grundlegenden Zusammenhänge der Polyedertheorie und der Theorie der linearen und ganzzahligen Optimierung. Kenntnis der wichtigsten Algorithmen, Fähigkeit zur geeigneten Modellierung praktischer Probleme als mathematische Optimierungsprobleme und deren Lösung, Computerimplementierung.
Inhalte: Modellierung von Optimierungsproblemen als (ganzzahlige) lineare Programme, Polyeder, Fourier-Motzkin-Elimination, Farkas' Lemma, Dualitätssätze, Simplexverfahren, Netzwerksimplex, Ellipsoidmethode, Bedingungen für Ganzzahligkeit von Polyedern, TDI-Systeme, vollständige Unimodularität, Schnittebenenverfahren.
Voraussetzungen: Lineare Algebra und Algorithmische Mathematik
Literaturhinweise: