Forschungsinstitut für Diskrete Mathematik

Vorlesung "Lineare und Ganzzahlige Optimierung"

Wintersemester 2007/08


Dozent: Jun.-Prof. Dr. T. Nieberg

Zeit und Ort: Di, Do 12-14, Gerhard-Konow-Hörsaal, Forschungsinstitut für Diskrete Mathematik, Lennéstr. 2

Ziele: Verständnis der grundlegenden Zusammenhänge der Polyedertheorie und der Theorie der linearen und ganzzahligen Optimierung. Kenntnis der wichtigsten Algorithmen, Fähigkeit zur geeigneten Modellierung praktischer Probleme als mathematische Optimierungsprobleme und deren Lösung, Computerimplementierung

Inhalte: Modellierung von Optimierungsproblemen als (ganzzahlige) lineare Programme, Polyeder, Fourier-Motzkin-Elimination, Farkas' Lemma, Dualitätssätze, Simplexverfahren, Netzwerksimplex, Ellipsoidmethode, Bedingungen für Ganzzahligkeit von Polyedern, TDI-Systeme, vollständige Unimodularität, Schnittebenenverfahren

Voraussetzungen: Lineare Algebra und Praktische Mathematik aus dem Grundstudium

Es wird eine zweistündige Übung zu dieser Vorlesung geben.