Exercise Set 5

Exercise 5.1. The LP relaxation of the MINIMUM WEIGHT VERTEX COVER PROBLEM is

$$\min\{cx: M^T x \ge 1, x \ge 0\}$$

where $M \in \{0,1\}^{n \times m}$ is the incidence matrix of an undirected graph G and $c \in \mathbb{R}^{V(G)}_+$. A half-integral solution for this relaxation is one with entries 0, $\frac{1}{2}$ and 1 only.

- (i) Show that the above LP relaxation of the MINIMUM WEIGHT VERTEX COVER PROBLEM always has a half-integral optimum solution.
- (ii) Use this to obtain a 2-approximation algorithm.
- (iii) Given a graph G = (V, E) with weights $c \in \mathbb{R}^n_+$ and a coloring $\varphi : V \to \{1, \ldots, k\}$, show how the LP relaxation can be used to find a vertex cover $X \subseteq V$ with cost $c(X) \leq (2 \frac{2}{k})$ OPT. Here OPT denotes the cost of an optimum solution.

(4+1+3 points)

Exercise 5.2. Consider the Fractional Multi Knapsack Problem: Given natural numbers $n,m\in\mathbb{N}$ and $w_i,\ c_{ij}\in\mathbb{N}$ as well as $W_j\in\mathbb{N}$ for $1\leq i\leq n$ and $1\leq j\leq m$, find $x_{ij}\geq 0$ satisfying $\sum_{j=1}^m x_{ij}=1$ for all $1\leq i\leq n$ and $\sum_{i=1}^n x_{ij}w_i\leq W_j$ for all $1\leq j\leq m$ such that $\sum_{i=1}^n \sum_{j=1}^m x_{ij}c_{ij}$ is minimum.

State a polynomial-time combinatorial algorithm for this problem.

(Do not use that a linear program can be solved in polynomial time.)

(4 points)

Exercise 5.3. Show that the following variant of the KNAPSACK PROBLEM is NP-hard:

$$\max \left\{ \sum_{i=1}^{n} c_i x_i : \sum_{i=1}^{n} w_i x_i \le W, \ x_i \in \mathbb{Z}_{\ge 0} \, \forall \, 1 \le i \le n \right\}$$
 (1)

(Here, we allow to use an item several times.) You may use that the KNAPSACK PROBLEM is NP-hard.

(4 points)

Information: The student council of mathematics will organize the math party on 9/05 in N8schicht. The presale will be held on Mon 6/05, Tue 7/05 and Wed 8/05 in the mensa Poppelsdorf. Further information can be found at fsmath.unibonn.de.

Deadline: Thursday, May $9^{\rm th}$, before the lecture. The websites for lecture and exercises can be found at:

http://www.or.uni-bonn.de/lectures/ss19/appr_ss19_ex.html

In case of any questions feel free to contact me at rockel@or.uni-bonn.de.