Number |
Approval talk |
Talk |
Name |
Topic |
Mentoring |
1
| 10.4.
| 24.4.
| Benjamin Klotz
| Expressing Combinatorial Optimization Problems by Linear Programs
| Philipp Ochsendorf
|
2
| 10.4.
| 8.5.
| Fabian Zaiser
| Symmetry matters for sizes of extended formulations
| Anna Hermann
|
3
| 24.4.
| 15.5.
| Dorothee Henke
| Some 0/1 polytopes need exponential size extended formulations
| Tomas Salles
|
4
| 8.5.
| 22.5.
| Benjamin Rockel
| Exponential lower bounds for polytopes in combinatorial optimization
| Rudolf Scheifele
|
5
| 15.5.
| 29.5.
| Friederike Michaelis
| The matching polytope has exponential extension complexity
| Daniel Rotter
|
6
| 22.5.
| 12.6.
| Ardalan Khazraei
| Approximation limits of linear programs (beyond hierarchies)
| Rudolf Scheifele
|
7
| 29.5.
| 19.6.
| Robert Vicari
| Approximate constraint satisfaction requires large LP relaxations
| Anna Hermann
|
8
| 12.6.
| 26.6.
| Ioana Simon
| No small linear program approximates vertex cover within a factor 2 - epsilon
| Jannik Silvanus
|
9
| 19.6.
| 3.7.
| Tobias Elvermann
| On the existence of 0/1 polytopes with high semidefinite extension complexity
| Jannik Silvanus
|
10
| 26.6.
| 10.7.
| Thekla Hamm
| Extended formulations for permutahedra
| Pietro Saccardi
|
11
| 3.7.
| 17.7.
| Lucas Slot
| Lower bounds on the size of semidefinite programming relaxations (Section 3)
| Pietro Saccardi
|
12
| 10.7.
| 24.7.
| Stefan Rabenstein
| Lower bounds on the size of semidefinite programming relaxations (Sections 5 and 6)
| Niko Klewinghaus
|
13
| 10.7. (16 Uhr)
| 24.7.
| Klaus Heeger
| Lower bounds on the size of semidefinite programming relaxations (Sections 4 and 7)
| Niko Klewinghaus
|