Exercise Set 3

Exercise 3.1. Assume unit B_2 -circuit-delay and zero wire-delay.

(a) Show that for n inputs with arrival times $t_i \in \mathbb{N}$ (i = 1, ..., n) there are n-ary AND, OR or XOR circuits over B_2 with delay $d \in \mathbb{N}$ if and only if

$$\sum_{i=1}^{n} 2^{t_i - d} \le 1.$$

(b) Provide an algorithm that finds such a circuit in $\mathcal{O}(n \log n)$ time.

(3 + 3 points)

Exercise 3.2. Consider a prefix tree computing $z_n \circ \cdots \circ z_1$ for generate/propatage pairs z_1, \ldots, z_n with arrival times $t_1, \ldots, t_n \in \mathbb{N}$, where \circ is the prefix operator for adder circuits. Let F_k be the first Fibonacci number that is at least as large as $\sum_{i=1}^{n} (F_{t_{i+1}} - 1)$.

- (a) Show that a prefix tree with B_2 delay at most k can be computed by computing a prefix tree for an instance with modified arrival times $t'_1, \ldots, t'_n \in \mathbb{N}$ with $\max\{t'_i : 1 \le i \le n\} \le 2n 1$.
- (b) Assume linear-time addition and multiplication with constants. Show that for any fixed $\gamma > 1$ a prefix carry bit circuit with B_2 -delay at most

$$\log_{\varphi} \left(\sum_{i=1}^{n} \varphi^{t_i} \right) + 4 + 2.1 \cdot n^{1-\gamma}$$

can be found in $\mathcal{O}(n\gamma \log^2 n)$ time where φ is the golden ratio.

(2 + 5 points)

Exercise 3.3. Let $n = 2^k$ for $k \in \mathbb{N}$ and a, b two n-bit numbers representing $|a|, |b| \in \mathbb{N}$. Define $f^n \in B_{2n,2n}$ as $f^n(a,b) := |a| \cdot |b|$ i.e. the product of two naturals.

- (a) A bit-shift is a multiplication by 2^i for $i \in \mathbb{N}$. Show that $|a| \cdot |b|$ can be expressed in terms of at most 3 non-bit-shift multiplications of $\frac{n}{2}$ -bit numbers, 6 additions of 2n-bit numbers, and several bit-shifts.
- (b) Show $S(n) \leq 3 \cdot S(\frac{n}{2}) + cn$ and $D(n) \leq D(\frac{n}{2}) + d \cdot \log_2 n$ for constants c and d.
- (c) Let $\Omega := \{ \wedge, \vee, \oplus \}$. Show $S_{\Omega}(f^n) = \mathcal{O}(n^{\log_2 3})$ and $D_{\Omega}(f^n) = \mathcal{O}(\log_2^2 n)$ for circuits with fanout 2.

(1+3+3 points)

Deadline: May $11^{\rm th}$, before the lecture. The websites for lecture and exercises can be found at

http://www.or.uni-bonn.de/lectures/ss17/chipss17.html

In case of any questions feel free to contact me at ochsendorf@or.uni-bonn.de.