Graduate Seminar on Discrete Optimization (S4C1)

Summer 2015


Submodularity and Discrete Convexity


In this seminar we will study discrete analogies of convex analysis for nonlinear discrete optimization, which can be considered as a generalization of matroid and submodular function theory. We will study the major theoretical results as well as the main applications of discrete convex analysis. Most topics are based on the book "Discrete Convex Analysis" by Kazuo Murota (SIAM, 2003). In addition, we cover the currently fastest algorithms for submodular function minimization, as well as recent applications of discrete convex analysis.
Class hours: Mondays 14:15-15:45. Approval talks: 12:15-13:45

Talk

Approval Talk

Title

Student

Tutor

13.04.2015

07.04.2015, 12:15

M/M# Convex Functions (Sections 6.1-6.7)

Tom Mechandijski

Rudolf Scheifele

20.04.2015

26.03.2015, 14:15

L/L# Convex Functions (Sections 7.1-7.5)

Lukasz Segiet

Rudolf Scheifele

27.04.2015

13.04.2015

Convex Extensions and Polyhedral Convexity(Sections 6.10,6.11,7.7,7.8)

On Hei Solomon Lo

Jannik Silvanus

04.05.2015

20.04.2015

Conjugacy (Section 8.1)

Beni Egressy

Daniel Rotter

11.05.2015

27.04.2015

Duality (Section 8.2, 9.1.4)

Judith Brecklinghaus

Daniel Rotter

18.05.2015

04.05.2015

Nonlinear Networks (Sections 2.2 and 9.6)

Alexander Goeke

Michael Gester

01.06.2015

11.05.2015

Minimizing M-convex and L-convex functions (Sections 10.1+10.3)

Lukas Miething

Michael Gester

08.06.2015

18.05.2015

M-Convex Submodular Flow Problems(Sections 9.2+9.3)

Alexander Platz

Pascal Cremer

15.06.2015

01.06.2015

Minimizing M-convex submodular flows (Section 10.4)

Maximilian Janke

Pascal Cremer

22.06.2015

08.06.2015

A simple combinatorial algorithm for submodular function minimization

Wolfgang Leyrer

Ulrike Schorr

29.06.2015

15.06.2015

A faster strongly polynomial time algorithm for submodular function minimization,

Mirko Wilde

Philipp Ochsendorf

06.07.2015

22.06.2015

A two-sided discrete-concave market with bounded side payments: An approach by discrete convex analysis.

Xianghui Zhong

Niko Klewinghaus



Prof. Dr. B. Korte,
Prof. Dr. J. Vygen,
Prof. Dr. S. Hougardy,
Prof. Dr. S. Held,
Dr. N. Hähnle,
Dr. U. Brenner