Nr. | Datum | Name | Thema | Betreuung |
---|---|---|---|---|
1 | 2.4. | Mareike Mink | Kapitel 2: Applications, Kapitel 3: Dantzig, Fulkerson, and Johnson und Kapitel 4.1: Branch-and-Bound | Stephan Held |
2 | 16.4. | Nina Merz | Kapitel 15: Tour finding | Stephan Held |
3 | 23.4. | Markus Moll | Arora: Polynomial time approximation schemes for euclidean traveling salesman and other geometric problems | Jens Maßberg |
4 | 30.4. | Tim Offermann | Christofides: Worst-case analysis of a new heuristic for the traveling salesman problem und Held und Karp: The traveling-salesman problem and minimum spanning trees | Dirk Müller |
5 | 7.5. | Christian Neuen | Papadimitriou und Yannakakis: The traveling salesman problem with distances one and two | Jens Maßberg |
6 | 21.5. | Alisa Maloglazova | Kapitel 5.3 - 5.7: Cutting Planes I | Markus Struzyna |
7 | 4.6. | Thomas Schulte-Wülwer | Kapitel 5.8 - 5.10: Cutting Planes II und Kapitel 6.1 - 6.3: Subtour cuts | Markus Struzyna |
8 | 11.6. | Ulrike Suhl | Kapitel 6.4, 6.5: Subtour cuts and PQ-trees | Ulrich Brenner |
9 | 11.6. (16 Uhr!) | Alexander Sagrebin | Kaplan, Lewenstein, Shafrir und Sviridenko: Approximation algorithms for asymmetric TSP by decomposing directed regular multigraphs | Jens Maßberg |
10 | 18.6. | Adrian Bock | Kapitel 7: Cuts from blossoms and blocks | Ulrich Brenner |
11 | 25.6. | Jesco Humpola | Fleischer, Letchford und Lodi: Polynomial-time separation of a superclass of simple comb inequalities | Dirk Müller |
12 | 2.7. | Klaus Radke | Kapitel 10: Cut metamorphoses | Christian Schulte |
13 | 9.7. | Dirk Ossenberg-Engels | Kapitel 11.1 - 11.4: Local cuts | Ulrich Brenner |
Alle Teilnehmerinnen und Teilnehmer sollten die Kapitel 1, 4, 5.1 und 5.2 vor Beginn der Vorträge gelesen haben.