Forschungsinstitut für Diskrete Mathematik

Vorlesung "Lineare und Ganzzahlige Optimierung"

Wintersemester 2010/11


Diese Vorlesung eignet sich für das (3. oder) 5. Semester im Rahmen des Bachelorstudiengangs Mathematik und ist eine Wahlpflichtvorlesung im Bereich C (Diskrete Mathematik). Ferner kann die Vorlesung im Rahmen des Bachelorstudiengangs Informatik besucht werden. Nähere Informationen können hier gefunden werden.


Zeit und Ort: Di, Do 12-14, Gerhard-Konow-Hörsaal, Forschungsinstitut für Diskrete Mathematik, Lennéstr. 2

Ziele: Verständnis der grundlegenden Zusammenhänge der Polyedertheorie und der Theorie der linearen und ganzzahligen Optimierung. Kenntnis der wichtigsten Algorithmen, Fähigkeit zur geeigneten Modellierung praktischer Probleme als mathematische Optimierungsprobleme und deren Lösung, Computerimplementierung.

Inhalte: Modellierung von Optimierungsproblemen als (ganzzahlige) lineare Programme, Polyeder, Fourier-Motzkin-Elimination, Farkas' Lemma, Dualitätssätze, Simplexverfahren, Netzwerksimplex, Ellipsoidmethode, Bedingungen für Ganzzahligkeit von Polyedern, TDI-Systeme, vollständige Unimodularität, Schnittebenenverfahren.

Voraussetzungen: Lineare Algebra und Algorithmische Mathematik

Literaturhinweise:

Alle genannten Bücher sind in der Bibliothek des Forschungsinstituts für Diskrete Mathematik vorhanden und auch ausleihbar.

Skript

Zu den Übungen


Juniorprofessor Dr. S. Held


Last modified: Wed Mar 31 17:29:06 2010